
On the connection between hyperelliptic separability and Painlevé integrability

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 3521

(http://iopscience.iop.org/0305-4470/34/17/301)

Download details:

IP Address: 171.66.16.95

The article was downloaded on 02/06/2010 at 08:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 3521–3539 www.iop.org/Journals/ja PII: S0305-4470(01)20672-6

On the connection between hyperelliptic separability
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Abstract
We consider systems of ODEs which are associated with some physically
significant examples: shallow water equilibrium solutions, travelling waves
of the Harry Dym equation, a Lotka–Volterra system of competing species and
the geodesic flow on the triaxial ellipsoid. The first three are shown to share the
following properties: (i) they are hyperelliptically separable systems (HSS) and,
after a suitable nonlinear time transformation, become algebraically completely
integrable (ACI) and (ii) they are of the weak Painlevé type and become full
Painlevé after the application of this transformation. The geodesic flow on
the other hand, although it passes the usual Painlevé test, does not possess a
full set of free constants and thus one may not conclude whether it has the
Painlevé property or not. This system is also HSS and becomes ACI after the
application of a suitable nonlinear time transformation. We also combine our
geometric-analytical investigation with a numerical analysis of the system in
the complex plane and show that there is perfect correspondence between the
results of the two approaches. This correspondence strengthens the reliability
of such numerical studies and helps us better understand their implication in
cases where such nonlinear transformations to complete integrability are not
available.

PACS numbers: 0230G, 0545

1. Introduction

One of the main questions concerning nonlinear dynamical systems is the implementation of
effective criteria to decide their integrability or non-integrability from the knowledge of the
singularity structure of the solutions [1]. As is well known, in many physical interesting cases
this is indeed possible and has led many researchers to associate the complete integrability
of a system with the Painlevé property, i.e. that the solutions are free from movable critical
points [2]. However, in other integrable systems this so-called strong Painlevé property does
not hold and a weaker property has been introduced.
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We recall that the strong (or full) Painlevé property means that the system admits near
every singularity formal Laurent series expansions of which at least one family depends on the
maximal number of free parameters [3]. On the other hand, for the weak Painlevé property,
Puisseux series need to be developed as, near some of its singularities, the solutions are allowed
to contain rational powers of the independent variables [4] (see also [5] for a global definition
of the weak Painlevé property).

The relation between the full Painlevé property and algebraic complete integrability (ACI)
has long been investigated starting with the papers of Adler and van Moerbeke [6]. More
recently, the connection between the weak Painlevé property and integrability has also been
explained in the case of hyperelliptically separable systems (HSS) [7].

In this paper we study four physically significant examples: time independent solutions
of a shallow water partial differential equation (PDE), wave solutions of the Harry Dym PDE,
an integrable Lotka–Volterra system and the geodesic flow on a triaxial ellipsoid. We prove
that the first three are naturally HSS and, after a suitable nonlinear time transformation (NTT),
become ACI. Furthermore, we show that all of them, apart from the geodesic flow, are weak
Painlevé and become full Painlevé after the application of this transformation.

In the case of the geodesic flow, we find that, although it passes the standard Painlevé test,
it does not possess a full set of free constants, and thus is not ACI. Nevertheless, we show that
it is HSS as it separates in ellipsoidal coordinates and becomes ACI after the application of a
suitable NTT.

In particular, we demonstrate in the above examples that, in the starting variables, the
generic invariant manifolds are open subsets of g-dimensional strata of a convenient (g + 1)-
dimensional generalized Jacobian associated to a hyperelliptic curve � of genus g. After the
NTT the system is algebraically completely integrable in the new variables and the generic
invariant manifold is an open subset of the Jacobian of � itself.

We also combine in this paper our geometric-analytical investigation with a numerical
study of the solutions in the complex plane and demonstrate that there is a perfect
correspondence between the two approaches. This is important because it strengthens the
reliability of such numerical studies and leads to a correct interpretation of their results, even
in cases where a similar geometric-analytical study is not available.

To make our paper self-contained we provide in section 2 a brief outline of the main
concepts and ideas of hyperelliptic separability and ACI.

Other authors (e.g. Goriely [8] in particular), have already observed that under certain
NTTs a system can pass from weak to full Painlevé and we find here that Goriely’s algorithm
works for our examples. Of course, our investigation leads to the natural question whether it
is possible to identify the precise conditions under which a system becomes full Painlevé after
applying a NTT. We conjecture that such transformations are successful, i.e. they allow one to
pass from a weak to a full Painlevé property, in all cases where a geometric picture similar to
our examples holds.

This question is not only of theoretical interest, since, in general, the solutions of systems
which have the weak Painlevé property are infinitely sheeted and ‘badly’ defined as functions,
as we explain in section 3 in the case of a Henon–Heiles quartic potential. On the other hand,
solutions of ACI systems are meromorphic functions. So it is clear that, if a NTT is available,
one can get, at least locally, some more detailed information about the original system by
writing down ‘good’ solutions in the new time variable and then applying them to it.

In section 4 we give the connection between the NTT and hyperelliptic separability, while
sections 5–8 describe our results for the shallow water solutions, the Harry Dym travelling
waves, the Lotka–Volterra system and the geodesic flow, respectively. Finally, we discuss our
conclusions in section 9.
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2. Algebraic complete integrability and hyperelliptically separable systems

The examples we consider in this paper all satisfy the following geometric description: assume
that we start with an integrable system of ODEs

dx

dt
= f (x) x = (x1, . . . , xn)

with first integrals I1, . . . , Ir and after a convenient change of variables x = T (ν) and fixing
the constants of motion, Ij = cj , j = 1, . . . , r , we obtain equations of the following type:

ν
l(k)
1 dν1√
R(ν1)

+ · · · +
ν
l(k)
N dνN√
R(νN)

= dφk k = 1, . . . , N (1)

where dφk = dk dt (dk constants),

R(ν) = A

s∏
j=1

(ν − ej ) A = A(c1, . . . , cr ) ej = ej (c1, . . . , cr )

and l(k) is a non-negative integer power, such that l(k − 1) < l(k).
The above picture naturally leads to the introduction of the genus g hyperelliptic curve �,

whose affine part satisfies the equation

� = {(ν,w) : w2 = R(ν)}
where the genus is defined by s = 2g + 1, 2g + 2. Let us fix a canonical basis of
cycles a1, . . . , ag, b1, . . . , bg and a vector ω = (ω1, . . . , ωg)

T of independent holomorphic
differentials on �. In particular, the following basis of holomorphic Abelian differentials

ωj = νj−1dν

R(ν)
j = 1, . . . , g

plays an important role in the examples we consider in the next sections. We recall that
Jac(�) = Cg/�, where Cg = (φ1, . . . , φg) and � is the lattice generated by the 2g period
vectors of ω along the canonical cycles a1, . . . , ag, b1, . . . , bg .

Fix P0 on � (basepoint). If we denote by �(n) the n symmetric power of �, the complete
image of the map

A : �(n) → Jac(�) A(P1, . . . , Pn) =
n∑
i=1

∫ Pi

P0

ω

is an n-dimensional stratum of the Jacobian of �, Wn = A(�(n)) and, in particular,
Wg ≡ Jac(�).

IfN = g and the differentials in (1) form a basis of holomorphic differentials, then (1) are
Abel–Jacobi equations in differential form, and the complete image of A(�(g)) is Jac(�),
φ1, . . . , φg depend linearly on t and, by the Jacobi inversion problem, x(φ1, . . . , φg) are
meromorphic. We call such a system ACI.

IfN < g and all the differentials in (1) are holomorphic, the complex invariant manifolds
are N -dimensional strata of the g-dimensional Jac(�) and only φ1, . . . , φN evolve linearly
in time, while the remaining ‘angles’ φN+1, . . . , φg depend analytically and nonlinearly on
φ1, . . . , φN as well as on t . We call such a system HSS. There is little hope in this case that
the solution x(t) may be well defined globally and indeed, as a consequence of the Jacobi
inversion theorem, we may conclude in general that it is an infinitely sheeted map [7]. In
the next section, we consider a Henon–Heiles Hamiltonian which is indeed HSS and present
numerical evidence of its infinitely sheeted solutions.
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In finite-dimensional reductions of the water wave equation and the Harry Dym equation,
and in the geodesic flow on the ellipsoid (treated in sections 5, 6 and 8, respectively) the
following differential:

νgdν

R(ν)

also appears in (1). It is an Abelian differential of the second kind with a double pole at
infinity, if s = 2g + 1, or an Abelian differential of the third kind with simple poles at ±∞,
if s = 2g + 2. In such cases, we can generalize the above picture in the following way: let
$
j

P denote the canonical differential of the second kind with a pole of order j at P ∈ � and
$PQ the differential of the third kind with simple poles at P andQ and residues, respectively,
±1. Then a (g + 1)-dimensional generalized Jacobian is Jac∗(�) = Cg+1/�∗, where �∗ is
the lattice generated by the 2g period vectors of ω∗ = (ω,$

j

P )
T along the canonical cycles

a1, . . . , ag, b1, . . . , bg (or, the lattice generated by the 2g+1 period vectors ofω∗ = (ω,$PQ)
T

along the canonical cycles a1, . . . , ag, b1, . . . , bg, γP , where γP denotes a closed cycle around
P which does not include Q and does not intersect a1, . . . , ag, b1, . . . , bg).

As before, we may define strata on the generalized Jacobian as follows: let P0 and �(n)

be defined as earlier, (respectively �(n)∗ = �(n)\{Pi = P,Q for some i = 1, . . . , n}). Then
the complete image of the following generalization of the Abel–Jacobi map:

A∗ : �(n) → Jac∗(�) resp. A∗ : �(n)∗ → Jac∗(�)

defined as

A∗(P1, . . . , Pn) =
n∑
i=1

∫ Pi

P0

ω∗

is an n-dimensional stratum of the generalized Jacobian of �, W ∗
n = A∗(�(n)) (respectively,

W ∗
n = A∗(�(n)∗ )) and W ∗

g+1 = Jac∗(�).
If N = g + 1 in (1) and if the differentials of the first g equations in (1) form a basis of

holomorphic differentials, while a meromorphic differential appears in the last equation, we
conclude that the generic invariant manifold of the system is an open subset of Jac∗(�) and
we call such a system ACI.

If N < g + 1, in all other cases, the system is HSS and the generic invariant manifold is
an open subset of an N -dimensional stratumW ∗

N of Jac∗(�). In sections 5 and 6 we show that
the finite-dimensional reductions of the shallow water wave and the Harry Dym equations fall
into this class.

3. A Henon–Heiles system

In this section, we shall use as an illustration of our approach the Henon–Heiles Hamiltonian
system:

d2x

dt2
= 2xy3 +

3

4
x3y

d2y

dt2
= 5y4 + 3x2y2 +

3

16
x4.

(2)

This is an example where an additional independent algebraic integral exists and is in involution
with the Hamiltonian, thus the system is integrable in the sense of Arnol’d–Liouville [1, 4].
However, it is also a case where the system admits algebraic singularities and, as we show
later, it is indeed hyperelliptically separable. Moreover, Goriely’s approach [8] of a NTT, as
described in section 4, is unable to transform this system into a full Painlevé one.
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Observe that system (2) is separable in parabolic coordinates

x2 = −4ν1ν2 y = ν1 + ν2

in which the Hamiltonian takes the Stäckel form

H(1)(p1, p2, ν1, ν2) = ν1

2(ν1 − ν2)
p1

2 − ν2

2(ν1 − ν2)
p2

2 − ν1
6 − ν2

6

ν1 − ν2

where pi denotes here the conjugate momentum to νi , i = 1, 2. In fact, this system possesses
a second integral independent of (and in involution with) H(1):

H(2)(p1, p2, ν1, ν2) = ν1ν2

2(ν1 − ν2)
(p2

2 − p1
2) +

ν1ν2(ν1
5 − ν2

5)

ν1 − ν2
.

By fixing the constants of motion H(i) = ci , i = 1, 2 and using the relation

ν̇i ≡ dνi
dt

= ∂H(1)

∂pi
= (−1)i−1 νi

ν1 − ν2
pi i = 1, 2

system (2) can be reduced to the equations
dν1√

2R(ν1)
+

dν2√
2R(ν2)

= 0

ν1 dν1√
2R(ν1)

+
ν2 dν2√
2R(ν2)

= dt

R(ν) = ν(c2 + c1ν + ν6)

(3)

where the differentials in (3) are holomorphic differentials associated to the genus three
hyperelliptic curve:

� : {(ν,w) : w2 = R(ν)}.
Thus, by comparison with the definitions of the previous section, we may immediately conclude
that this is an example of an HSS since the generic invariant manifolds are open subsets of
two-dimensional strata W2 ⊂ Jac(�).

We now demonstrate that numerical investigation in the complex time plane also indicates
that this system has ISS (infinitely sheeted solutions). To do this we will integrate equations (2)
in the complex t-plane using the following procedure: taking as initial conditions x(0) = 1,
ẋ(0) = 0.5, y(0) = 1 and ẏ(0) = 0 (dot denotes differentiation with respect to t), we integrate
clockwise along the rectangular contour −0.6 � Re (t) � 0.6 and −1.7 � Im (t) � 1.7 (this
procedure will be further explained in section 5). We find that four singularities enter the
contour and x returns to its initial value after one turn.

We now keep everything the same, but change the integration path: first, we calculate
xP (0) (the initial value of x at P = (0, 0.01)). Then we integrate clockwise along the up-
right rectangular contour, as shown in figure 1. We then integrate clockwise along the up-left,
down-left and down-right contours and after every such four turns we calculate the difference
+xP (N) = |xP (N) − xP (0)|, N = 1, 2, . . . . In this way we discover a dense pattern of
singularities (figure 2(a)) and x does not return to its initial value (figure 2(b)), even after
N = 100 (or more) turns.

Observe that if one expands the solutions of (2) near a movable singularity t = t∗ in
the complex t-plane, one obtains asymptotic expansions of x(t), y(t) in powers of (t − t∗)1/3,
indicating that this system has only algebraic singularities and is of the weak Painlevé type [1,4].

Let us also remark that had we not changed to a more complicated path (as described
above), but kept integrating exclusively along the clockwise direction, we might have missed
the ISS, thus concluding that the system possesses only finitely sheeted solutions (FSS). In
fact, an implication of such a wrong result was made in an earlier publication by one of the
authors [9].
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Figure 1. The integration path for the Henon–Heiles Hamiltonian system (2).

Figure 2. Evidence of ISS for (2) following the integration path shown in figure 1.

4. A nonlinear time transformation

In [8] Goriely introduced a NTT which may transform a weak Painlevé system into one with
the full Painlevé property. In particular, let us suppose that we have a system of ODEs of the
following form:

dxi
dt

= xi

m∑
j=1

Aij

n∏
k=1

x
Bjk
k i = 1, . . . , n (4)

with Aij , Bjk ∈ R. Then the relation

dt = dt̃
n∏
i=1

x
βi
i
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transforms (4) into the system

dxi
dt̃

= xi

m∑
j=1

Ãij

n∏
k=1

x
B̃jk
k i = 1, . . . , n (5)

where

Ã = A B̃ij = Bij + βj .

If pi and qi are, respectively, the powers of the dominant and non-dominant behaviour
of (4), r are the resonances (except from −1) and

c = −
n∑
i=1

piβi

then this NTT gives

p̃i = pi

1 + c
q̃i = qi − c

1 + c
r̃ = r

1 + c
for system (5). Obviously if system (4) is weak Painlevé with natural denominator d a suitable
choice of c is 1 + c = 1/d [8].

In the next sections, we show that such a transformation is indeed successful for certain
finite-dimensional reductions of the shallow water wave and Harry Dym equations. More
generally the NTT is successful in all cases of HSS whose complex invariant manifolds can be
completed to N -dimensional strata of (N + 1)-dimensional generalized Jacobians associated
to the genus N hyperelliptic curve

� : {(ν,w) : w2 = R(ν)}
and such that

N∑
i=1

νi
k dνi√
R(νi)

=
{

0 if k = 1, . . . , N − 1

dt if k = N .

Indeed if we insert the following time transformation:

dT = dt
N∏
i=1

νi

in the differential equations (4) we get

N∑
i=1

νi
k dνi√
R(νi)

=
{

dT if k = 0

0 if k = 1, . . . , N − 1

which are the differential Abel–Jacobi equations associated to the same hyperelliptic curve.
Notice that the NTT leaves the curve invariant and transforms the meromorphic differential to
the ‘missing’ holomorphic differential associated to �. As a result, after this transformation,
the system turns out to be ACI as expected.

5. The shallow water wave equation

Recently, a new PDE has been proposed for shallow water waves:

ut + ux − 3
2ρ2βuxxt +

(
1 − 3

2ρ2
)
βuxxx + αuux − 1

2ρ2αβ(uuxxx + 2uxuxx) = 0 (6)

as an improvement of the KdV equation, based on physical grounds [10,11]. Equation (6) was
first derived in [12] by using the method of bi-Hamiltonian systems. It was also studied in [13]
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Figure 3. Integration path for equation (7).

from the point of view of Painlevé analysis. Considering equilibrium (i.e. time-independent)
solutions of this equation by setting u = u(x) and integrating (6) with respect to x we obtain

u +
(
1 − 3

2ρ2
)
βuxx + 1

2αu
2 − 1

4αβρ2(ux
2 + 2uuxx) = c (7)

where c is an integration constant (we also assume that α, β, ρ2 �= 0).
Equation (7) has been also studied in [14], from the point of view of singularity analysis

in the complex x-plane. We briefly recall here the main results: first, the application of the
usual Painlevé test to (7) yields as leading order behaviour of the solutions u = a1 + a2χ

p,
where χ = x−x∗ (x∗ is the singularity), p = 2/3, a1 = (2−3ρ2)/(αρ2) and a2 is an arbitrary
parameter. Free constants enter at resonances −1, 0.

Let us now perform a numerical integration of (7) using the ATOMFT package to study
its analytic properties [15–17]. Setting c = 0, α = ρ2 = 2 and β = 1 and taking as initial
conditions u(0) = 1 and ux(0) = 0.1, we calculate uP (0) (the initial value of u at point P ),
using analytic continuation, along a path shown in figure 3. We then integrate equation (7)
numerically in the complex x-plane along rectangular contours, starting from P and going
clockwise. After each turn we calculate the difference +uP (N) = |uP (N) − uP (0)|, where
N is the number of turns, as explained in section 3.

Keeping −1 � Re (x) � 1 and increasing the limits of Im (x), we observe that new
singularities enter the contour, but always yield exact returns to the initial conditions after a
number of turns N , which increases as the limits of Im (x) are increased (see figures 4(a), (b),
where −3.4 � Im (x) � 3.4). Similar results are found for different contours. This
behaviour, referred to as FSS, constitutes a numerical indication of integrability if it persists
for arbitrarily large contours and arbitrary integration paths. Thus, to minimize the possibility
of misinterpretation we integrated (7) along a variety of paths of different sizes and always
recovered upon returns to the starting point the same initial conditions to very high accuracy.
This suggests that (7) may indeed turn into ACI under a suitable nonlinear transformation.

Motivated by this evidence, we were able to prove that the implications of our numerical
study are indeed true [14]. To see this, set

w(x) = 2δu(x) + e δ = 1
4αβρ2 e = (

3
2ρ2 − 1

)
β
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Figure 4. Evidence of FSS for equation (7).

whence equation (7) becomes

w
d2w

dx2
+

1

2

(
dw

dx

)2

− α

4δ
w2 +

(αe
2δ

− 1
)
w +K = 0 (8)

with

K = 2δc + e − αe2

4δ
.

Then we introduce

w(x) = W(t) dx = W(t) dt Z = t

√
α

6δ
and obtain from (8) the equation

d2W

dZ2
= 1

2W

(
dW

dZ

)2

+
3W 3

2
+

(
6δ

α
− 3e

)
W 2 +

(
3e2

2
− 6δe

α
− 12δ2c

α

)
W

which is Painlevé XXX [18].
Let us now observe that equation (8) leads to an HSS if it is written in Hamiltonian form

with coordinate w and conjugate momentum p = w dw
dx :

H = p2

2w
+Kw +

1

2

(αe
2δ

− 1
)
w2 − α

12δ
w3.

Fixing the constant of motion H = E, we immediately obtain

dx = w dw√
2w(E −Kw + 1

2 (1 − αe
2δ )w

2 + α
12δw

3)

. (9)

Let � be the elliptic curve of the equation

γ 2 = 2w

(
E −Kw +

1

2

(
1 − αe

2δ

)
w2 +

α

12δ
w3

)
.

Then relation (9) is an Abelian differential of the third kind, with a pole at ±∞. The
compactified complex generic invariant manifold associated with this system is a one-
dimensional stratum of the two-dimensional generalized Jacobian Jac∗(�) = Jac(�) × C∗.
Thus, the reduced system is hyperelliptically separable by definition.
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Finally, using the NTT

w(x) = W(t) dx = W(t) dt

relation (9) becomes, in the new time variable t , a differential of the first kind for �:

dt = dW√
2W(E −KW + 1

2 (1 − αe
2δ )W

2 + α
12δW

3)

.

Thus, in this new time variable, W(t) is meromorphic in t , the associated complex invariant
manifold is an open subset of the Jacobian Jac(�) and the system is algebraic completely
integrable.

Let us observe, however, that this NTT does not preserve the Hamiltonian structure of the
system: indeed, the Hamiltonian in W , 9, with 9 conjugate momentum, becomes

H 1 = 1

2
92W +KW +

1

2

(αe
2δ

− 1
)
W 2 − α

12δ
W 3

and the relation between the old and new conjugate variables is

dp ∧ dw = W d9 ∧ dW.

6. The Harry Dym equation

The Harry Dym equation, as studied in [19], has the form

Ht = H 3Hxxx.

Considering travelling wave solutions of this equation we set H = H(z) = H(x − t) and
obtain

H 3 d3H

dz3
= −dH

dz
. (10)

We have taken the speed of these waves c = 1, without loss of generality, as this can be easily
scaled out of (10).

A direct application of the Painlevé test to equation (10) yields the following results (see
also [19]):

Step 1. The leading order behaviour is H = a0ζ
p where ζ = z − z∗, p = 2/3 and

a0
3 = −9/4.

Step 2. The resonances are −1, 2/3 and 4/3.

Step 3. Substituting the series

H = ζ 2/3(a0 + a1ζ
1/3 + a2ζ

2/3 + a3ζ + a4ζ
4/3 + · · ·)

we find that a1 = a3 = 0 and a2, a4 are arbitrary.
Thus, we find again only algebraic singularities in the complex ζ -plane and a deeper

analysis of integrability is required.
Moreover equation (10) has FSS as can be easily seen numerically by integrating in

the complex z-plane. The singularities appear in straight lines and we always have exact
returns after any number of turns, see figures 5(a), (b) for the initial conditions H(0) = 1,
Hz(0) = 0.1, Hzz(0) = 0 and −2 � Re (z) � 4.5, −16 � Im (z) � 16. Note that the pattern
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Figure 5. Evidence of FSS for equation (10).

is again periodic as in the case of the shallow water wave equation and any variation of the
path does not affect the finitely sheeted structure of the solution.

Let us now show that (10) is indeed integrable, both in Painlevé and algebraic sense. First
we set

H(z) = w(t) dz = w(t) dt

multiply the resulting equation with w−1 and integrate once with respect to t to obtain

d2w

dt2
= 3

2w

(
dw

dt

)2

+ cw + 1

where c is the integration constant. We then change variables to

w(t) = 1

2cW(Z)
Z = bt b2 = − c

2

and the previous equation becomes

d2W

dZ2
= 1

2W

(
dW

dZ

)2

+ 4W 2 + 2W

which is Painlevé XIX [18].
We also observe that equation (10) may be immediately integrated once to give

H
d2H

dz2
− 1

2

(
dH

dz

)2

− 1

H
= C

with C constant. This last equation can be put in the Hamiltonian form

H = 1

2
Hp2 +

C

H
+

1

2H 2

where p = 1
H

dH
dz , from which, setting H = E, we immediately get

dz = H dH√
2EH 3 − 2CH 2 −H
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which is an Abelian differential of the second kind with a double pole at infinity associated
with the elliptic curve:

� : {γ 2 = 2EH 3 − 2CH 2 −H }.
Thus, the complex invariant manifold of this system is a one-dimensional stratum of the

two-dimensional generalized Jacobian, Jac∗(�). With the time transformation

H(z) = w(t) dz = w(t) dt

we get

dt = dw√
2Ew3 − 2Cw2 − w

which is an elliptic differential of the first kind. This proves that w(t) is meromorphic in t in
complete agreement with the above reduction to Painlevé XIX and the numerical results. As
in the shallow water wave equation the time transformation does not preserve the symplectic
structure.

7. The Lotka–Volterra system

A generalized Lotka–Volterra system of three interacting species with equal growth rates for
all species, can be written in the form

dx

dt
= Cxy + xz

dy

dt
= Ayz + yx

dz

dt
= Bxz + zy

where we have eliminated the linear growth terms λx, λy, λz from the x, y, z equations,
respectively, and A, B, C are constant parameters.

In the case A = 1, BC = 1, this system is known to admit two integrals [20]
(x − Cy)2zC

xy
= D2 D(x − Cy)− C

∫
D2 dz√
D2 + 4CzC

= E

and its equations of motion become
dx

dt
= Cxy + xz

dy

dt
= yz + yx

dz

dt
= 1

C
xz + zy.

(11)

The application of the Painlevé test to (11) yields the following results:

Step 1. The system has the following branches of singular behaviour:

(i) x = a0τ
−1, y = b0τ

−1 and z = c0τ
−1, where τ = t − t∗ and a0 = −C/2, b0 = −1/2,

c0 = (C − 2)/2.
(ii) x = a0τ

p, y = b0τ
−1 and z = c0τ

−1, where p = −1 − C > −1, a0 is arbitrary and
b0 = c0 = −1. This branch exists iff C < 0.

(iii) x = a0τ
−1, y = b0τ

p and z = c0τ
−1, where p = −1 − C > −1 and a0 = −C, b0 is

arbitrary, c0 = −1. Again this branch exists iff C < 0.
(iv) x = a0τ

−1, y = b0τ
−1 and z = c0τ

p, wherep = −2/C > −1 and a0 = −1, b0 = −1/C,
c0 is arbitrary. This branch exists iff C < 0 or C > 2.
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Step 2. We find the following resonances:

(i) −1, C/2, (2 − C)/2. (ii)–(iv) −1, 0, 1.

Thus, the only cases for which system (11) is weak Painlevé with natural denominator
two are C = ±1 and ±4 [20].

For C = 1 system (11) has only the first singular branch (i) above and step three of the
Painlevé analysis yields

x = τ−1(a0 + a1τ
1/2 + · · ·)

y = τ−1(b0 + b1τ
1/2 + · · ·)

z = τ−1(c0 + c1τ
1/2 + · · ·)

where a1 +b1 +c1 = 0. Hence the equations possess algebraic singularities and the full Painlevé
property cannot be established. However, if we integrate equations (11) in the complex t-plane
for C = 1 we find strong evidence of FSS, which suggests that the system may indeed be
Painlevé integrable by an appropriate change of coordinates.

Let us now show that (11) is indeed integrable for C = 1. Equation (11c) gives

x + y = ż

z
(12)

where a dot denotes differentiation with respect to t . Differentiating once (11c) and
using (11a), (11b) and (12) we obtain

2xy = z̈

z
−

(
ż

z

)2

− ż. (13)

Then we differentiate (13) once and using (11a), (11b), (12) and (13) arrive at the equation

1

z2

d3z

dt3
− 4

1

z3

d2z

dt2
dz

dt
+ 3

1

z4

(
dz

dt

)3

− 3
1

z

d2z

dt2
+ 3

1

z2

(
dz

dt

)2

+ 2
dz

dt
= 0 (14)

which can be immediately integrated to give

1

z2

d2z

dt2
− 1

z3

(
dz

dt

)2

− 3

z

dz

dt
+ 2z−K = 0. (15)

Note that if we applied the same procedure to (11) for arbitrary C, we would arrive at an
equation analogous to (14), which can be integrated once only if C = 1.

Combining the first integral of the system, (x−y)2z = D2xy, with (12), (13), to eliminate
x, y we obtain

ż2

z
=

(
D2

2
+ 2z

) (
z̈

z
− ż2

z2
− ż

)
which, when substituted in (15), leads to the equation

dz

dt
= z

[(
D2

2
+ 2z

)
+

√(
D2

2
+ 2z

) (
K +

D2

2

)]
. (16)

Let us now make the following change of variables in (16):

w2 =
(
D2

2
+ 2z

) (
K +

D2

2

)
obtaining

dw

dt
= G

2

(
w2

G
− D2

2

) (
1 +

w

G

)
(17)
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where we have introduced the auxiliary constant

G =
(
K +

D2

2

)
.

We now make the following NTT:

w(t) = −G + u(t)

u(t) = U(T ) dt = U(T )−1 dT

and obtain from (17) the simple Riccati equation

dU

dT
= 1

2G
U 2 − U +

K

2
which establishes the full Painlevé property of the equations in these variables as also suggested
by our numerical results.

8. The geodesic flow on a triaxial ellipsoid

Here, we analyse a system, which is Arnol’d–Liouville integrable and also appears to have
only meromorphic solutions. However, even though it passes the usual Painlevé test it cannot
be shown to possess the strong Painlevé property in the sense of having a sufficient number
of free parameters. Our analysis shows, indeed, that this system is not ACI, but HSS, as it
separates into ellipsoidal coordinates.

Let 0 < D1 < D2 < D3 and define by

Q(0) =
{
x1

2

D1
+
x2

2

D2
+
x3

2

D3
= 1

}
a triaxial ellipsoid with semi-axes

√
D1,

√
D2 and

√
D3. The geodesic flow on this ellipsoid

can be obtained from the Hamiltonian

H = 1
2 (p1

2 + p2
2 + p3

2)

where pi is the conjugate momentum to xi , with the constraints

(x1, x2, x3) ∈ Q(0)
3∑
i=1

xipi

Di

= 0.

This system is completely integrable in the sense of possessing a set of involutive first
integrals [21]

Fi = pi
2 +

∑
i �=j

(xipj − xjpi)
2

Di −Dj

i = 1, 2, 3

of which only two are independent due to the relation

H = 1
2 (F1 + F2 + F3).

Let us now fix these constants of motion and pass to ellipsoidal coordinates λ1, λ2 which
satisfy

xi
2

Di

=
∏2
k=1(Di − λk)∏
i �=j (Di −Dj)

with µ1, µ2 their associated momenta. Then the following algebraic relation holds:

µk
2 = c1λk(λk − c2)∏3

j=1(λk −Dj)
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with c1, c2 depending on the values of the constants of motion. From the above relations, the
following genus two hyperelliptic curve is defined

� :

{
w2 = c1λ(λ− c2)

3∏
j=1

(λ−Dj)

}

and the equations of geodesic motion become

λ1 dλ1√
c1λ1(λ1 − c2)

∏3
j=1(λ1 −Dj)

+
λ2 dλ2√

c1λ2(λ2 − c2)
∏3
j=1(λ2 −Dj)

= 0

λ1
2 dλ1√

c1λ1(λ1 − c2)
∏3
j=1(λ1 −Dj)

+
λ2

2 dλ2√
c1λ2(λ2 − c2)

∏3
j=1(λ2 −Dj)

= dt.

From these equations we conclude that the generic invariant manifolds of the system are open
subsets of two-dimensional strata of a three-dimensional generalized Jacobian associated with
�, and the geodesic flow is HSS and not ACI.

Now making the NTT

−λ1λ2 dT = dt

the above system of equations becomes

dλ1√
c1λ1(λ1 − c2)

∏3
j=1(λ1 −Dj)

+
dλ2√

c1λ2(λ2 − c2)
∏3
j=1(λ2 −Dj)

= dT

λ1 dλ1√
c1λ1(λ1 − c2)

∏3
j=1(λ1 −Dj)

+
λ2 dλ2√

c1λ2(λ2 − c2)
∏3
j=1(λ2 −Dj)

= 0

and the invariant manifolds associated with this new system are open subsets of the two-
dimensional Jac(�).

Notice that, in the original xi , pi variables, this geodesic flow is described by the following
system of ODEs:

dx1

dt
= D3x2(x1p2 − x2p1) +D2x3(x1p3 − x3p1) +D2D3p1

dx2

dt
= D3x1(x2p1 − x1p2) +D1x3(x2p3 − x3p2) +D1D3p2

dx3

dt
= D2x1(x3p1 − x1p3) +D1x2(x3p2 − x2p3) +D1D2p3

dp1

dt
= D3p2(x1p2 − x2p1) +D2p3(x1p3 − x3p1)

dp2

dt
= D3p1(x2p1 − x1p2) +D1p3(x2p3 − x3p2)

dp3

dt
= D2p1(x3p1 − x1p3) +D1p2(x3p2 − x2p3).

Let us now turn to the results of the Painlevé analysis of these equations.

Step 1. There is only one leading order behaviour of the solutions, namely

x1 = a10τ
−1 p1 = b10

x2 = a20τ
−1 p2 = b20

x3 = a30τ
−1 p3 = b30
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where τ = t − t∗ and

a10 : arbitrary

a20
2 = D1 −D3

D3 −D2
a10

2 a30
2 = D1 −D2

D2 −D3
a10

2

b10 = D1

(D1 −D2)(D1 −D3)a10

b20 = D2

(D2 −D1)(D2 −D3)a20

b30 = D3

(D3 −D1)(D3 −D2)a30
.

Step 2. The resonances are −1 (double root), 0, 1 and 2 (double root).

Step 3. Setting

x1 = a10τ
−1 + a11 + a12τ + · · ·

x2 = a20τ
−1 + a21 + a22τ + · · ·

x3 = a30τ
−1 + a31 + a32τ + · · ·

p1 = b10 + b11τ + b12τ
2 + · · ·

p2 = b20 + b21τ + b22τ
2 + · · ·

p3 = b30 + b31τ + b32τ
2 + · · ·

we find

a11 : arbitrary

a21 = D2(D3 −D1)a10a11

D1(D2 −D3)a20

a31 = D3(D1 −D2)a10a11

D1(D2 −D3)a30

b11 = b21 = b31 = 0

while two of ai2 and bi2 are also arbitrary. Furthermore, it is not possible to find any additional
free parameters by including logarithmic terms in the above expansions.

Let us observe therefore that the above family is not principal, since it only possesses five
free constants and hence one cannot conclude that this system has the full Painlevé property.
Thus, the fact that the geodesic flow passes the Painlevé test does not contradict the fact that
it is HSS instead of ACI. Moreover numerical analysis verifies that this system always admits
a periodic pattern of poles and hence only has meromorphic solutions, in agreement with the
above results.

It would be interesting to apply to this system the perturbative Painlevé test of Conte
et al [22] to firmly establish whether this geodesic flow has the strong Painlevé property or
not. Such a study is currently under investigation and results will be reported elsewhere.

9. Conclusions

As is well known the term integrability, in the case of dynamical systems, can be given different
meanings, depending on the kind of systems studied. In the case of Hamiltonian systems, of
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course, Arnol’d–Liouville integrability is especially meaningful since it implies for n-degree-
of-freedom systems the existence of n independent integrals, including the Hamiltonian, which
are in involution with each other and can be used, in principle, to integrate the equations of
motion by quadratures.

Given that one is interested in studying actual solutions, the Painlevé property has often
proved particularly useful, as it identifies systems whose solutions are all single-valued (not
possessing movable critical points) and can often be explicitly integrated in terms of elliptic
functions [1,3]. In fact, a rigorous correspondence has been established between this property
and a subclass of integrable systems with rational first integrals through the notion of ACI [6].

Unfortunately not all Arnol’d–Liouville integrable systems with rational integrals are
ACI. Thus, an extended class of integrable systems was recently proposed, the so-called HSS,
which in general are not ACI, but to which most of the familiar tools of algebraic geometry
apply. Many physically interesting examples were already shown to fall into this class, like
the Henon–Heiles hierarchy and the Neumann system [7].

In this paper, we have identified a number of additional examples of HSS, in the form of
finite-dimensional reductions of a shallow water wave equation and the Harry Dym equation, a
Lotka–Volterra system of three competing species and the geodesic flow on a triaxial ellipsoid.
The particularly interesting feature of the first three of these examples is that their solutions
have only algebraic singularities (hence are locally finitely-sheeted) and are seen to fall into the
weak Painlevé class [1,4]. The geodesic flow passes the usual Painlevé test, but does not have
a branch with the full set of free constants, and is not ACI in its original form. Nevertheless,
it becomes ACI after a suitable transformation of variables.

Dynamical systems with only algebraic singularities have been conjectured to be
completely integrable if their solutions are found to be globally finitely sheeted around arbitrary
contours in the complex plane of the independent variable [9, 16, 17]. Such integrations
can actually be carried out numerically to great accuracy and with reliable results, using the
powerful ATOMFT package developed by Chang and Corliss [15].

Using this numerical procedure, we have shown here that our three weak Painlevé examples
indeed appear to possess globally only FSS, exhibiting a periodic lattice of singularities around
all the integration paths we have chosen. Based on this evidence and knowing from our
geometric-analytical approach that they are HSS, we have been able to find for all of them
certain so-called NTTs, first introduced by Goriely [8], mapping them to ACI systems having
the strong Painlevé property.

Geometrically, these NTTs act to change one meromorphic differential associated with
the system to a holomorphic one, completing the basis of holomorphic differentials associated
with a convenient hyperelliptic curve. On the other hand, from the point of view of differential
equations, these transformations map the original system to one which is integrable in the
sense of Painlevé and may, thus, belong to the class of ACI systems whose properties are well
analysed and understood.

Clearly, the interest in finding such transformations is due to the fact that the powerful
methods of algebraic geometry can be used to study ACI systems in considerable detail. For
instance, all solutions of such systems are meromorphic and, in the Hamiltonian case, complex
action-angle variables on complexified Arnol’d–Liouville tori are well defined, discretization
through Bäcklund transformations is possible, etc.

The following question, therefore, naturally arises: given a system which possesses only
algebraic singularities, under what conditions can we find NTTs that map it to a system that is
ACI? All our numerical evidence so far suggests that this may be possible when all solutions
along arbitrary contours are globally finitely sheeted, with a periodic pattern of singularities
in the complex domain.
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However, a complete classification of all classes in which such transformations apply is
still lacking. Furthermore, many properties of HSS, like their discretization, still remain to
be discovered. We hope to be able to address some of these fascinating issues in a future
publication.
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